HEXACHLORO-1,3-BUTADIENE (HCBD)

MW 260.76

CAS No. 87-68-3

HCBD - OCCURRENCE

- California 4 071 pounds under waste management
- United States 8 000 000 pounds as total production-related waste

BIOTIC LEVELS OF HCBD

- Fish fat 0.01 to 1.2 ppm (near PERC or TCE manufacturing plants)
- Human adipose tissue 1-8 ppb wet weight (Canada)

HCBD - CARCINOGENICITY STUDIES

No human studies

Four reports on rodent studies

HCBD - BIOASSAYS (cont'd)

- Theiss, et al., 1977 no effect
 - Mice Strain A/St, male
 - intraperitoneal injection, three/week, 24 weeks
 - HCBD dissolved in tricaprylin
 - 0, 4, 8 mg/kg
 - evaluated only lungs
 - assay is insensitive to aliphatic chlorides

HCBD - BIOASSAYS (cont'd)

- Van Duuren, et al., 1979 no effect
 - Mice, ICR Swiss, female
 - Dermal application, three/week, 1-1.5 years
 - HCBD (0, 2, 6 mg/mouse) dissolved in acetone
 - no skin tumors
 - lung papillomas (p<0.05 by Fisher's Exact Test)

HCBD - BIOASSAYS

- Chudin, et al., 1985 no effect
 - Rats Wistar, male
 - Daily gavage for two years
 - HCBD dissolved in sunflower oil
 - 0, 0.6, 5.8, 37 mg/kg_{bw}-day

HCBD - BIOASSAYS (cont'd)

- Kociba, et al., 1977 two positive bioassays
 - Kidney tumors
 - Rats, Sprague-Dawley, female / male
 - Diet, two years
 - HCBD dissolved in acetone prior to mixing with feed
 - 0. 0.2, 2.0, 20 mg/kg_{bw}

Kociba et al., 1977a

		Dose (mg HCBD/kg _{bw} -day)			
Tumor Site and Type		0	0.2	2	20
Males					
Renal tubular tumors	Adenoma	1/90	0/40	0/40	3/39 (8%)
	Adenocarcinoma	0/90	0/40	0/40	7/39 (18%)
					p < 0.001
	Undifferentiated carcinoma	0/90	0/40	0/40	1/39 (2.6%)
	Renal tubular	1/90	0/40	0/40	9/39 (23%)
	neoplasms (total)				p < 0.0001
Females					
Renal tubular tumors	Adenoma	0/90	0/40	0/40	3/40 (8%)
					p = 0.03
	Adenocarcinoma	0/90	0/40	0/40	2/40 (5%)
	Undifferentiated carcinoma	0/90	0/40	0/40	1/40 (2.5%)
	Renal tubular	0/90	0/40	0/40	6/40 (15%)
	neoplasms (total)				p < 0.001

HCBD - Initiation/promotion

- Initiation no effect in dermally exposed female mice
- Promotion positive in diet exposed male rats

HCBD - Genotoxicity

- Bacteria (Salmonella)
 - mutagenicity observed in presence of glutathione / mercapturate /kidney β-lyase pathway
 - GSH, kidney / liver extracts
 - positive with glutathione or cysteine conjugates of HCBD
 - abolished in presence of enzyme inhibitors
 - not mutagenic in presence of CYP-dependent oxidative metabolism

Drosophila

negative for sex-linked recessive lethal mutations

HCBD - Genotoxicity (cont'd)

- Mammalian systems (HCBD and metabolites)
 - in vitro (HCBD and metabolites)
 - positive <u>DNA cross links</u>, <u>UDS</u>, SCE, morphologic transformation
 - no effect CA, <u>SSB</u>
 - in vivo
 - positive DNA repair
 - no effect- dominant lethal mutations, CA

HCBD-Genotoxicity (cont'd)

DNA binding

- rat 0.8 alkylations/10⁶ nucleotides in renal DNA
- mice covalent binding to renal and hepatic mitochondrial DNA and renal nuclear DNA.

HCBD - Structure Activity

HCBD

IARC Group 3

Trichloroethylene (TCE)

Tetrachloroethylene (Perc)

IARC Group 2A Proposition 65

HCBD - Mechanism for Carcinogenicity

Genotoxic

- bacterial mutagenicity
- mammalian genotoxicity
- DNA binding in kidney

Non-genotoxic

- kidney tumor promotion
- renal epithelial hyperplasia
- $-\alpha_{2u}$ binding male rat

HCBD - Summary

Carcinogenicity

 Renal adenocarcinoma & adenoma and undifferentiated carcinoma in female and male rats fed HCBD for lifetime.

Supporting evidence

- Mutagenic in bacteria
- genotoxic in mammalian kidney cells and tissue
- DNA binding to renal tissue in rats and mice
- Carcinogenicity of structural analogues
- Tumor promotion

